437 research outputs found

    Retrieval accuracy of very large DNA-Based databases of digital signals

    Get PDF
    In this paper a simulation of single query searches in very large DNA-based databases that are capable of storing and retrieving digital signals is presented. Similarly to the digital domain, a signal-to-noise ratio (SNR) measure to assess the performance of theDNA-based retrieval scheme in terms of database size and source statistics is defined. With approximations, it is shown that the SNR of any finite sizeDNA-based database is upper bounded by the SNR of an infinitely large one with the same source distribution. Computer simulations are presented to validate the theoretical outcomes

    In silico estimation of annealing specificity of query searches in DNA databases

    Get PDF
    We consider DNA implementations of databases for digital signals with retrieval and mining capabilities. Digital signals are encoded in DNA sequences and retrieved through annealing between query DNA primers and data carrying DNA target sequences. The hybridization between query and target can be non-specific containing multiple mismatches thus implementing similarity-based searches. In this paper we examine theoretically and by simulation the efficiency of such a system by estimating the concentrations of query-target duplex formations at equilibrium. A coupled kinetic model is used to estimate the concentrations. We offer a derivation that results in an equation that is guaranteed to have a solution and can be easily and accurately solved computationally with bi-section root-finding methods. Finally, we also provide an approximate solution at dilute query concentrations that results in a closed form expression. This expression is used to improve the speed of the bi-section algorithm and also to find a closed form expression for the specificity ratios

    Tracking-Optimized Quantization for H.264 Compression in Transportation Video Surveillance Applications

    Get PDF
    We propose a tracking-aware system that removes video components of low tracking interest and optimizes the quantization during compression of frequency coefficients, particularly those that most influence trackers, significantly reducing bitrate while maintaining comparable tracking accuracy. We utilize tracking accuracy as our compression criterion in lieu of mean squared error metrics. The process of optimizing quantization tables suitable for automated tracking can be executed online or offline. The online implementation initializes the encoding procedure for a specific scene, but introduces delay. On the other hand, the offline procedure produces globally optimum quantization tables where the optimization occurs for a collection of video sequences. Our proposed system is designed with low processing power and memory requirements in mind, and as such can be deployed on remote nodes. Using H.264/AVC video coding and a commonly used state-of-the-art tracker we show that while maintaining comparable tracking accuracy our system allows for over 50% bitrate savings on top of existing savings from previous work

    DNA as a medium for storing digital signals

    Get PDF
    Motivated by the storage capacity and efficiency of the DNA molecule in this paper we propose to utilize DNA molecules to store digital signals. We show that hybridization of DNA molecules can be used as a similarity criterion for retrieving digital signals encoded and stored in a DNA database. Since retrieval is achieved through hybridization of query and data carrying DNA molecules, we present a mathematical model to estimate hybridization efficiency (also known as selectivity annealing). We show that selectivity annealing is inversely proportional to the mean squared error (MSE) of the encoded signal values. In addition, we show that the concentration of the molecules plays the same role as the decision threshold employed in digital signal matching algorithms. Finally, similarly to the digital domain, we define a DNA signal-to-noise ratio (SNR) measure to assess the performance of the DNA-based retrieval scheme. Simulations are presented to validate our arguments

    Restoration of the cantilever bowing distortion in Atomic Force Microscopy

    Get PDF
    Due to the mechanics of the Atomic Force Microscope (AFM), there is a curvature distortion (bowing effect) present in the acquired images. At present, flattening such images requires human intervention to manually segment object data from the background, which is time consuming and highly inaccurate. In this paper, an automated algorithm to flatten lines from AFM images is presented. The proposed method classifies the data into objects and background, and fits convex lines in an iterative fashion. Results on real images from DNA wrapped carbon nanotubes (DNACNTs) and synthetic experiments are presented, demonstrating the effectiveness of the proposed algorithm in increasing the resolution of the surface topography. In addition a link between the flattening problem and MRI inhomogeneity (shading) is given and the proposed method is compared to an entropy based MRI inhomogeniety correction method
    corecore